Code Using GraphQL
README
Install Steps if running locally on linux not on Dgraph Cloud:
docker pull dgraph/standalone
mkdir -p ~/dgraph
docker run -it -p 5080:5080 -p 6080:6080 -p 8080:8080 \
-p 9080:9080 -p 8000:8000 -v ~/dgraph:/dgraph --name dgraph \
dgraph/standalone:masterSet your GraphQL Schema:
touch schema.graphql
nano schema.graphqltype Product {
id: ID!
name: String! @id
reviews: [Review] @hasInverse(field: about)
}
type Customer {
username: String! @id
reviews: [Review] @hasInverse(field: by)
}
type Review {
id: ID!
about: Product!
by: Customer!
comment: String @search(by: [fulltext])
rating: Int @search
}curl -X POST localhost:8080/admin/schema --data-binary '@schema.graphql'Fire up your favorite GraphQL Client pointed at http://localhost:8080/graphql and run mutations and queries
mutation {
addProduct(input: [{ name: "Dgraph" }, { name: "Dgraph Cloud" }]) {
product {
id
name
}
}
addCustomer(input: [{ username: "TonyStark" }]) {
customer {
username
}
}
}mutation {
addReview(
input: [
{
by: { username: "TonyStark" }
about: { name: "Dgraph" }
comment: "Fantastic, easy to install, worked great. Best GraphQL server available"
rating: 10
}
]
) {
review {
id
comment
rating
by {
username
}
about {
id
name
}
}
}
}query {
queryReview(
filter: { comment: { alloftext: "server easy install" }, rating: { gt: 5 } }
) {
comment
by {
username
reviews(order: { desc: rating }, first: 10) {
about {
name
reviews(order: { asc: rating }, first: 5) {
by {
username
}
comment
rating
}
}
rating
}
}
about {
name
}
}
}README
To run a ballerina-graphql hello world server:
- Download and install Ballerina Language
- Then run
bal run graphql_service.balto run the service, with this code in thegraphql_service.balfile:
import ballerina/graphql;
service /graphql on new graphql:Listener(9090) {
resource function get hello() returns string {
return "Hello, world!";
}
}- Built with Ballerina
serviceandlistenermodel, which are first-class citizens in Ballerina - Supports subscriptions over websocket (No additional libraries needed)
- Supports file upload
- Built-in GraphiQL client
README
To run a ballerina-graphql client:
- Download and install Ballerina Language
- Then run
bal run graphql_client.balto run the service, with this code in thegraphql_client.balfile:
import ballerina/graphql;
import ballerina/io;
type Response record {
record { string hello; } data;
};
public function main() returns error? {
graphql:Client helloClient = check new ("localhost:9090/graphql");
string document = "{ hello }";
Response response = check helloClient->execute(document);
io:println(response.data.hello);
}- Dependently-typed response retrieval with Ballerina type inferring
- Custom client generation support
README
Linq2GraphQL generates C# classes from the GraphQL schema and and togheter with the nuget package Linq2GraphQL.Client it makes it possible to query the server using Linq expressions.
A simple query that will get the first 10 orders with the primitive properties of orders and the connected customer
var orders = await sampleClient
.Query
.Orders(first: 10)
.Include(e => e.Orders.Select(e => e.Customer))
.Select(e => e.Orders)
.ExecuteAsync();An example mutation where we add a new customer and return the Customer Id.
var customerId = await sampleClient
.Mutation
.AddCustomer(new CustomerInput
{
CustomerId = Guid.NewGuid(),
CustomerName = "New Customer",
Status = CustomerStatus.Active
})
.Select(e=> e.CustomerId)
.ExecuteAsync();README
Strawberry Shake removes the complexity of state management and lets you interact with local and remote data through GraphQL.
You can use Strawberry Shake to:
- Generate a C# client from your GraphQL queries.
- Interact with local and remote data through GraphQL.
- Use reactive APIs to interact with your state.
client.GetHero
.Watch(ExecutionStrategy.CacheFirst)
.Subscribe(result =>
{
Console.WriteLine(result.Data.Name);
})README
The ZeroQL is a high-performance C#-friendly GraphQL client. It supports Linq-like syntax, and doesn’t require Reflection.Emit or expressions. As a result, at runtime provides performance very close to a raw HTTP call.
You can use ZeroQL to:
- Generate a C# client from GraphQL schema.
- Generate and execute graphql queries from your C# code.
- Don’t require writing GraphQL manually.
- Supports .Net Core, .Net Framework, Xamarin, Unity apps.
var userId = 10;
var response = await qlClient.Query(q => q
.User(userId, o => new
{
o.Id,
o.FirstName,
o.LastName
}));README
// expose an existing data model with ASP.NET & EF Core
public class Startup {
public void ConfigureServices(IServiceCollection services)
{
services.AddDbContext<DemoContext>();
// Auto build a schema from DemoContext. Alternatively you can build one from scratch
services.AddGraphQLSchema<DemoContext>(options =>
{
// modify the schema (add/remove fields or types), add other services
});
}
public void Configure(IApplicationBuilder app, DemoContext db)
{
app.UseRouting();
app.UseEndpoints(endpoints =>
{
// defaults to /graphql endpoint
endpoints.MapGraphQL<DemoContext>();
});
}
}README
using System;
using System.Threading.Tasks;
using GraphQL;
using GraphQL.Types;
using GraphQL.SystemTextJson; // First add PackageReference to GraphQL.SystemTextJson
public class Program
{
public static async Task Main(string[] args)
{
var schema = Schema.For(@"
type Query {
hello: String
}
");
var json = await schema.ExecuteAsync(_ =>
{
_.Query = "{ hello }";
_.Root = new { Hello = "Hello World!" };
});
Console.WriteLine(json);
}
}README
Hot Chocolate takes the complexity away from building a fully-fledged GraphQL server and lets you focus on delivering the next big thing.
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
WebHost
.CreateDefaultBuilder(args)
.ConfigureServices(services =>
services
.AddGraphQLServer()
.AddQueryType<Query>())
.Configure(builder =>
builder
.UseRouting()
.UseEndpoints(e => e.MapGraphQL()))
.Build()
.Run();
public class Query
{
public Hero GetHero() => new Hero();
}
public class Hero
{
public string Name => "Luke Skywalker";
}README
(require '[alumbra.core :as alumbra]
'[claro.data :as data])
(def schema
"type Person { name: String!, friends: [Person!]! }
type QueryRoot { person(id: ID!): Person, me: Person! }
schema { query: QueryRoot }")
(defrecord Person [id]
data/Resolvable
(resolve! [_ _]
{:name (str "Person #" id)
:friends (map ->Person (range (inc id) (+ id 3)))}))
(def QueryRoot
{:person (map->Person {})
:me (map->Person {:id 0})})
(def app
(alumbra/handler
{:schema schema
:query QueryRoot}))
(defonce my-graphql-server
(aleph.http/start-server #'app {:port 3000}))$ curl -XPOST "http://0:3000" -H'Content-Type: application/json' -d'{
"query": "{ me { name, friends { name } } }"
}'
{"data":{"me":{"name":"Person #0","friends":[{"name":"Person #1"},{"name":"Person #2"}]}}}README
Code that executes a hello world GraphQL query with graphql-clj:
(def schema "type QueryRoot {
hello: String
}")
(defn resolver-fn [type-name field-name]
(get-in {"QueryRoot" {"hello" (fn [context parent & rest]
"Hello world!")}}
[type-name field-name]))
(require '[graphql-clj.executor :as executor])
(executor/execute nil schema resolver-fn "{ hello }")README
genqlient is a Go library to easily generate type-safe code to query a GraphQL API. It takes advantage of the fact that both GraphQL and Go are typed languages to ensure at compile-time that your code is making a valid GraphQL query and using the result correctly, all with a minimum of boilerplate.
genqlient provides:
- Compile-time validation of GraphQL queries: never ship an invalid GraphQL query again!
- Type-safe response objects: genqlient generates the right type for each query, so you know the response will unmarshal correctly and never need to use
interface{}. - Production-readiness: genqlient is used in production at Khan Academy, where it supports millions of learners and teachers around the world.
README
The purpose of Eggql is to make it as simple as possible to create a GraphQL server. You don’t need to create GraphQL schema (though you can view the schema that is created if interested). It is currently in beta release but is a complete implementation of a GraphQL server apart from subscriptions.
Just to be clear it supports all of these GraphQL features: arguments (including defaults), objects/lists/enums/input/interface/union types, aliases, fragments, variables, directives, mutations, inline fragments, descriptions, introspection and custom scalars.
Tests (jMeter) show that it is as fast or faster than other Go implementations for simple queries. We’re working on enhancements for performance including caching, data-loader, complexity-limits, etc.
To run an eggql hello world server just build and run this Go program:
package main
import "github.com/andrewwphillips/eggql"
func main() {
http.Handle("/graphql", eggql.New(struct{ Message string }{Message: "hello, world"}))
http.ListenAndServe(":80", nil)
}This creates a root Query object with a single message field. To test it send a query with curl:
$ curl -XPOST -d '{"query": "{ message }"}' localhost:80/graphqland you will get this response:
{
"data": {
"message": "hello, world"
}
}README
graphql-go-tools implements all basic blocks for building GraphQL Servers, Gateways and Proxy Servers. From lexing, parsing, validation, normalization, all the way up to query planning and execution.
It can also be understood as a GraphQL Compiler, with the ability to add your own backends. Just by implementing a few interfaces, you’re able to teach the compiler how to talk GraphQL to any backend.
The following backends are already implemented: GraphQL, with support for Apollo Federation / Supergraph. Databases: PostgreSQL, MySQL, SQLite, CockroachDB, MongoDB, SQLServer, OpenAPI / REST and Kafka.
To get a sense on how to implement a new backend, check out the Static Data Source, as it’s the simplest one.
It’s used in production by many enterprises for multiple years now, battle tested and actively maintained.
README
Core Library - The GORM GraphQL library provides functionality to generate a GraphQL schema based on your GORM entities. In addition to mapping domain classes to a GraphQL schema, the core library also provides default implementations of “data fetchers” to query, update, and delete data through executions of the schema.
Grails Plugin - In a addition to the Core Library, the GORM GraphQL Grails Plugin:
-
Provides a controller to receive and respond to GraphQL requests through HTTP, based on their guidelines.
-
Generates the schema at startup with spring bean configuration to make it easy to extend.
-
Includes a GraphiQL browser enabled by default in development. The browser is accessible at /graphql/browser.
-
Overrides the default data binder to use the data binding provided by Grails
-
Provides a trait to make integration testing of your GraphQL endpoints easier
See the documentation for more information.
README
One time setup: build schema, deploy as microservice or within server, query SQL database with GraphQL!
README
Hello world example with morpheus-graphql:
# schema.gql
"""
A supernatural being considered divine and sacred
"""
type Deity {
name: String!
power: String @deprecated(reason: "no more supported")
}
type Query {
deity(name: String! = "Morpheus"): Deity!
}{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
module API (api) where
import Data.ByteString.Lazy.Char8 (ByteString)
import Data.Morpheus (interpreter)
import Data.Morpheus.Document (importGQLDocument)
import Data.Morpheus.Types (RootResolver (..), Undefined (..))
import Data.Text (Text)
importGQLDocument "schema.gql"
rootResolver :: RootResolver IO () Query Undefined Undefined
rootResolver =
RootResolver
{ queryResolver = Query {deity},
mutationResolver = Undefined,
subscriptionResolver = Undefined
}
where
deity DeityArgs {name} =
pure
Deity
{ name = pure name,
power = pure (Just "Shapeshifting")
}
api :: ByteString -> IO ByteString
api = interpreter rootResolverSee morpheus-graphql-examples for more sophisticated APIs.
README
Example implementation of a GraphQL server with type-level representation of the schema auto-generated:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
-- imports omitted for brevity...
graphql "Library" "library.graphql" -- all the magic happens here! 🪄🎩
-- ... a bit more code...
libraryServer :: SqlBackend -> ServerT ObjectMapping i Library ServerErrorIO _
libraryServer conn =
resolver
( object @"Book"
( field @"id" bookId,
field @"title" bookTitle,
field @"author" bookAuthor,
field @"imageUrl" bookImage
),
object @"Author"
( field @"id" authorId,
field @"name" authorName,
field @"books" authorBooks
),
object @"Query"
( method @"authors" allAuthors,
method @"books" allBooks
),
object @"Mutation"
( method @"newAuthor" newAuthor,
method @"newBook" newBook
),
object @"Subscription"
(method @"allBooks" allBooksConduit)
)
where
bookId :: Entity Book -> ServerErrorIO Integer
bookId (Entity (BookKey k) _) = pure $ toInteger k
-- ... more resolvers...See our docs for more information about how to build your own GraphQL server and the library example for a more end-to-end example that includes a client written in Elm!
README
Apollo Kotlin (formerly known as Apollo Android) is a GraphQL client with support for Android, Java8+, iOS and Kotlin multiplatform in general. It features:
- Java and Kotlin Multiplatform code generation
- Queries, Mutations and Subscriptions
- Reflection-free parsing
- Normalized cache
- Custom scalar types
- HTTP cache
- Auto Persisted Queries
- Query batching
- File uploads
- Espresso IdlingResource
- Fake models for tests
- AppSync and graphql-ws websockets
- GraphQL AST parser
README
GraphQL Kotlin provides a set of lightweight type-safe GraphQL HTTP clients. The library provides Ktor HTTP client and Spring WebClient based reference implementations as well as allows for custom implementations using other engines. Jackson and kotlinx-serialization type-safe data models are generated at build time by the provided Gradle and Maven plugins.
To generate Jackson models that will be used with GraphQL Kotlin Spring WebClient, add following to your Gradle build file:
// build.gradle.kts
import com.expediagroup.graphql.plugin.gradle.graphql
plugins {
id("com.expediagroup.graphql") version $latestGraphQLKotlinVersion
}
dependencies {
implementation("com.expediagroup:graphql-kotlin-spring-client:$latestGraphQLKotlinVersion")
}
graphql {
client {
// target GraphQL endpoint
endpoint = "http://localhost:8080/graphql"
// package for generated client code
packageName = "com.example.generated"
}
}By default, GraphQL Kotlin plugins will look for query files under src/main/resources. Given HelloWorldQuery.graphql sample query:
query HelloWorldQuery {
helloWorld
}Plugin will generate classes that are simple POJOs implementing GraphQLClientRequest interface and represent a GraphQL request.
package com.example.generated
import com.expediagroup.graphql.client.types.GraphQLClientRequest
import kotlin.String
import kotlin.reflect.KClass
const val HELLO_WORLD_QUERY: String = "query HelloWorldQuery {\n helloWorld\n}"
class HelloWorldQuery: GraphQLClientRequest<HelloWorldQuery.Result> {
override val query: String = HELLO_WORLD_QUERY
override val operationName: String = "HelloWorldQuery"
override fun responseType(): KClass<HelloWorldQuery.Result> = HelloWorldQuery.Result::class
data class Result(
val helloWorld: String
}
}We can then execute our queries using target client.
package com.example.client
import com.expediagroup.graphql.client.spring.GraphQLWebClient
import com.expediagroup.graphql.generated.HelloWorldQuery
import kotlinx.coroutines.runBlocking
fun main() {
val client = GraphQLWebClient(url = "http://localhost:8080/graphql")
runBlocking {
val helloWorldQuery = HelloWorldQuery()
val result = client.execute(helloWorldQuery)
println("hello world query result: ${result.data?.helloWorld}")
}
}See graphql-kotlin client docs for additional details.
README
GraphQL Calculator is a lightweight graphql calculation engine, which is used to alter execution behavior of graphql query.
Here are some examples on how to use GraphQL Calculator on graphql query.
query basicMapValue($userIds: [Int]) {
userInfoList(userIds: $userIds) {
id
age
firstName
lastName
fullName: stringHolder @map(mapper: "firstName + lastName")
}
}
query filterUserByAge($userId: [Int]) {
userInfoList(userIds: $userId) @filter(predicate: "age>=18") {
userId
age
firstName
lastName
}
}
query parseFetchedValueToAnotherFieldArgumentMap($itemIds: [Int]) {
itemList(itemIds: $itemIds) {
# save sellerId as List<Long> with unique name "sellerIdList"
sellerId @fetchSource(name: "sellerIdList")
name
saleAmount
salePrice
}
userInfoList(userIds: 1)
# transform the argument of "userInfoList" named "userIds" according to expression "sellerIdList" and expression argument,
# which mean replace userIds value by source named "sellerIdList"
@argumentTransform(
argumentName: "userIds"
operateType: MAP
expression: "sellerIdList"
dependencySources: ["sellerIdList"]
) {
userId
name
age
}
}See graphql-calculator README for more information.
README
The GraphQL Spring Boot turns any Spring Boot application into a GraphQL Server
Started includes features such as:
- Use a schema-driven API with the help of GraphQL Java Tools
- Optionally choose to use an annotation driven schema with the help of GraphQL-Java Annotations
- Embedded GraphiQL tool for schema introspection and query debugging
- Embedded GraphQL Playground tool for schema introspection and query debugging
- Embedded the GraphQL Voyager tool to represent your GraphQL API as an interactive graph
See GraphQL Java Kickstart Getting Started for how to get started.
README
See the Getting Started tutorial on the GraphQL Java website.
Code that executes a hello world GraphQL query with graphql-java:
import graphql.ExecutionResult;
import graphql.GraphQL;
import graphql.schema.GraphQLSchema;
import graphql.schema.StaticDataFetcher;
import graphql.schema.idl.RuntimeWiring;
import graphql.schema.idl.SchemaGenerator;
import graphql.schema.idl.SchemaParser;
import graphql.schema.idl.TypeDefinitionRegistry;
import static graphql.schema.idl.RuntimeWiring.newRuntimeWiring;
public class HelloWorld {
public static void main(String[] args) {
String schema = "type Query{hello: String}";
SchemaParser schemaParser = new SchemaParser();
TypeDefinitionRegistry typeDefinitionRegistry = schemaParser.parse(schema);
RuntimeWiring runtimeWiring = newRuntimeWiring()
.type("Query", builder -> builder.dataFetcher("hello", new StaticDataFetcher("world")))
.build();
SchemaGenerator schemaGenerator = new SchemaGenerator();
GraphQLSchema graphQLSchema = schemaGenerator.makeExecutableSchema(typeDefinitionRegistry, runtimeWiring);
GraphQL build = GraphQL.newGraphQL(graphQLSchema).build();
ExecutionResult executionResult = build.execute("{hello}");
System.out.println(executionResult.getData().toString());
// Prints: {hello=world}
}
}See the graphql-java docs for further information.
README
GraphQL Kotlin follows a code first approach for generating your GraphQL schemas. Given the similarities between Kotlin and GraphQL, such as the ability to define nullable/non-nullable types, a schema can be generated from Kotlin code without any separate schema specification. To create a reactive GraphQL web server add following dependency to your Gradle build file:
// build.gradle.kts
implementation("com.expediagroup", "graphql-kotlin-spring-server", latestVersion)We also need to provide a list of supported packages that can be scanned for exposing your schema objects through reflections. Add following configuration to your application.yml file:
graphql:
packages:
- "com.your.package"With the above configuration we can now create our schema. In order to expose your queries, mutations and/or subscriptions in the GraphQL schema you simply need to implement corresponding marker interface and they will be automatically picked up by graphql-kotlin-spring-server auto-configuration library.
@Component
class HelloWorldQuery : Query {
fun helloWorld() = "Hello World!!!"
}This will result in a reactive GraphQL web application with following schema:
type Query {
helloWorld: String!
}See graphql-kotlin docs for additial details.
README
-
SpringBoot has introduced Spring GraphQL since 2.7. Jimmer provides specialized API for rapid development of Spring GraphQL-based applications.
-
Support two APIs: Java API & kotlin API.
-
Powerful and GraphQL friendly caching support.
-
Faster than other popular ORM solutions, please see the benchmark: https://babyfish-ct.github.io/jimmer/docs/benchmark/
-
More powerful than other popular ORM solutions.
Three aspects should be considered in ORM design:
a. Query. b. Update. c. Cache.
Each aspect is aimed at object trees with arbitrary depth rather than simple objects. This distinctive design brings convenience unmatched by other popular solutions.
-
Youtube video: https://www.youtube.com/watch?v=Rt5zNv0YR2E
-
Documentation: https://babyfish-ct.github.io/jimmer/
-
Project Home: https://github.com/babyfish-ct/jimmer
-
GraphQL example for Java: https://github.com/babyfish-ct/jimmer/tree/main/example/java/jimmer-sql-graphql
-
GraphQL example for Kotlin: https://github.com/babyfish-ct/jimmer/tree/main/example/kotlin/jimmer-sql-graphql-kt
README
Here’s an example on how to create a simple schema based on a kotlin data class plus a property resolver that gets applied onto your class.
data class Article(val id: Int, val text: String)
fun main() {
val schema = KGraphQL.schema {
query("article") {
resolver { id: Int?, text: String ->
Article(id ?: -1, text)
}
}
type<Article> {
property<String>("fullText") {
resolver { article: Article ->
"${article.id}: ${article.text}"
}
}
}
}
schema.execute("""
{
article(id: 5, text: "Hello World") {
id
fullText
}
}
""").let(::println)
}KGraphQL is using coroutines behind the scenes to provide great asynchronous performance.
See KGraphQL docs for more in depth usage.
Ktor PluginKGraphQL has a Ktor plugin which gives you a fully functional GraphQL server with a single install function call. Example below shows how to set up a GraphQL server within Ktor and it will give you a GraphQL Playground out of the box by entering localhost:8080/graphql.
fun Application.module() {
install(GraphQL) {
playground = true
schema {
query("hello") {
resolver { -> "World!" }
}
}
}
}You can follow the Ktor tutorial to set up a KGraphQL server with ktor from scratch up.
README
MicroProfile GraphQL is a GraphQL server and client specification for building GraphQL applications. It’s unique annotation-based API approach enables rapid application development. Applications coded to the MP GraphQL APIs are portable, and can be deployed into Java server runtimes such as Open Liberty, Quarkus, Helidon and Wildfly. This means that your applications can make use of other Jakarta and MicroProfile technologies.
MP GraphQL features include:
- Annotation-based APIs
- Integration with Jakarta CDI
- Type-safe and dynamic client APIs
- Exception handling
- Easy integration with Jakarta and MicroProfile technologies
Want to get started? Check out these resources:
- Learn how to create and deploy a server side app in Open Liberty.
- Learn how to create a client application in Open Liberty.
- Learn how to create and deploy a server side app in Quarkus.
- Quick tutorial to build a simple sample weather application.
Or these videos:
README
The DGS Framework (Domain Graph Service) is a GraphQL server framework for Spring Boot, developed by Netflix.
Features include:
- Annotation based Spring Boot programming model
- Test framework for writing query tests as unit tests
- Gradle Code Generation plugin to create types from schema
- Easy integration with GraphQL Federation
- Integration with Spring Security
- GraphQL subscriptions (WebSockets and SSE)
- File uploads
- Error handling
- Many extension points
See DGS Framework Getting Started for how to get started.
README
Spring for GraphQL provides support for Spring applications built on GraphQL Java. See the official Spring guide for how to build a GraphQL service in 15 minutes.
- It is a joint collaboration between the GraphQL Java team and Spring engineering.
- Our shared philosophy is to provide as little opinion as we can while focusing on comprehensive support for a wide range of use cases.
- It aims to be the foundation for all Spring, GraphQL applications.
Features:
- Server handling of GraphQL requests over HTTP, WebSocket, and RSocket.
- An annotation-based programming model where @Controller components use annotations to declare handler methods with flexible method signatures to fetch the data for specific GraphQL fields. For example:
@Controller
public class GreetingController {
@QueryMapping
public String hello() {
return "Hello, world!";
}
}- Client support for executing GraphQL requests over HTTP, WebSocket, and RSocket.
- Dedicated support for testing GraphQL requests over HTTP, WebSocket, and RSocket, as well as for testing directly against a server.
To get started, check the Spring GraphQL starter on https://start.spring.io and the samples in this repository.
README
- Querying, mutating and subscribing without manual writing of query strings (unless you want to!)
- Deserializing responses directly into Julia types
- Construction of Julia types from GraphQL objects
- Using introspection to help with querying
Install with Julia’s package manager
using Pkg; Pkg.add("GraphQLClient")
using GraphQLClient
Connect to a server
client = Client("https://countries.trevorblades.com")Build a Julia type from a GraphQL object
Country = GraphQLClient.introspect_object(client, "Country")And query the server, deserializing the response into this new type
response = query(client, "countries", Vector{Country}, output_fields="name")Alternatively write the query string manually
query_string = """
{
countries{
name
}
}"""
response = GraphQLClient.execute(client, query_string)README
GQty is a query builder, a query fetcher and a cache manager solution all-in-one.
You interact with your GraphQL endpoint via Proxy objects. Under the hood, GQty captures what is being read, checks cache validity, fetch missing contents and then updates the cache for you.
Start using GQty by simply running our interactive codegen:
# npm
npx @gqty/cli
# yarn
yarn dlx @gqty/cli
# pnpm
pnpm dlx @gqty/cliGQty also provides framework specific integrations such as @gqty/react and @gqty/solid, which can be installed via our CLI.
README
The example below installs and initializes the GraphQLBox client with a persisted cache and debugging enabled.
npm install @graphql-box/core @graphql-box/client @graphql-box/request-parser @graphql-box/cache-manager @graphql-box/debug-manager @graphql-box/fetch-manager @graphql-box/helpers @cachemap/core @cachemap/reaper @cachemap/indexed-db @cachemap/constants @cachemap/typesimport Cachemap from "@cachemap/core"
import indexedDB from "@cachemap/indexed-db"
import reaper from "@cachemap/reaper"
import CacheManager from "@graphql-box/cache-manager"
import Client from "@graphql-box/client"
import DebugManager from "@graphql-box/debug-manager"
import FetchManager from "@graphql-box/fetch-manager"
import RequestParser from "@graphql-box/request-parser"
import introspection from "./introspection-query"
const requestManager = new FetchManager({
apiUrl: "/api/graphql",
batchRequests: true,
logUrl: "/log/graphql",
})
const client = new Client({
cacheManager: new CacheManager({
cache: new Cachemap({
name: "client-cache",
reaper: reaper({ interval: 300000 }),
store: indexedDB(/* configure */),
}),
cascadeCacheControl: true,
typeCacheDirectives: {
// Add any type specific cache control directives in the format:
// TypeName: "public, max-age=3",
},
}),
debugManager: new DebugManager({
environment: "client",
log: (message, data, logLevel) => {
requestManager.log(message, data, logLevel)
},
name: "CLIENT",
performance: self.performance,
}),
requestManager,
requestParser: new RequestParser({ introspection }),
})
// Meanwhile... somewhere else in your code
const { data, errors } = await client.request(queryOrMutation)README
- 🥇 First-class hooks API
- ⚖️ Tiny bundle: only 7.6kB (2.8 gzipped)
- 📄 Full SSR support: see graphql-hooks-ssr
- 🔌 Plugin Caching: see graphql-hooks-memcache
- 🔥 No more render props hell
- ⏳ Handle loading and error states with ease
npm install graphql-hooksFirst you’ll need to create a client and wrap your app with the provider:
import { GraphQLClient, ClientContext } from "graphql-hooks"
const client = new GraphQLClient({
url: "/graphql",
})
function App() {
return (
<ClientContext.Provider value={client}>
{/* children */}
</ClientContext.Provider>
)
}Now in your child components you can make use of useQuery:
import { useQuery } from "graphql-hooks"
const HOMEPAGE_QUERY = `query HomePage($limit: Int) {
users(limit: $limit) {
id
name
}
}`
function MyComponent() {
const { loading, error, data } = useQuery(HOMEPAGE_QUERY, {
variables: {
limit: 10,
},
})
if (loading) return "Loading..."
if (error) return "Something Bad Happened"
return (
<ul>
{data.users.map(({ id, name }) => (
<li key={id}>{name}</li>
))}
</ul>
)
}fetch.README
Relay is a JavaScript framework for building data-driven React applications.
- Declarative: Never again communicate with your data store using an imperative API. Simply declare your data requirements using GraphQL and let Relay figure out how and when to fetch your data.
- Colocation: Queries live next to the views that rely on them, so you can easily reason about your app. Relay aggregates queries into efficient network requests to fetch only what you need.
- Mutations: Relay lets you mutate data on the client and server using GraphQL mutations, and offers automatic data consistency, optimistic updates, and error handling.
README
urql is a GraphQL client that exposes a set of helpers for several frameworks.
It’s built to be highly customisable and versatile so you can take it from getting started with your first GraphQL project
all the way to building complex apps and experimenting with GraphQL clients.
- Currently supports React, React Native, Preact, Svelte, and Vue, and is supported by GraphQL Code Generator.
- Logical yet simple default behaviour and document caching, and normalized caching via
@urql/exchange-graphcache - Fully customizable behaviour via “exchanges” (addon packages)
README
To run a hello world server with Apollo Server:
npm install @apollo/server graphqlThen run node server.js with this code in server.js:
import { ApolloServer } from "@apollo/server"
import { startStandaloneServer } from "@apollo/server/standalone"
// The GraphQL schema
const typeDefs = `#graphql
type Query {
hello: String
}
`
// A map of functions which return data for the schema.
const resolvers = {
Query: {
hello: () => "world",
},
}
const server = new ApolloServer({
typeDefs,
resolvers,
})
const { url } = await startStandaloneServer(server)
console.log(`🚀 Server ready at ${url}`)Apollo Server has a built in standalone HTTP server and middleware for Express, and has an framework integration API that supports all Node.js HTTP server frameworks and serverless environments via community integrations.
Apollo Server has a plugin API, integration with Apollo Studio, and performance and security features such as caching, automatic persisted queries, and CSRF prevention.
README
The example below installs and initializes the GraphQLBox server with a persisted cache and debugging enabled.
npm install @graphql-box/core @graphql-box/server @graphql-box/client @graphql-box/request-parser @graphql-box/cache-manager @graphql-box/debug-manager @graphql-box/execute @graphql-box/helpers @cachemap/core @cachemap/reaper @cachemap/redis @cachemap/constants @cachemap/typesimport Cachemap from "@cachemap/core"
import redis from "@cachemap/redis"
import reaper from "@cachemap/reaper"
import CacheManager from "@graphql-box/cache-manager"
import Client from "@graphql-box/client"
import DebugManager from "@graphql-box/debug-manager"
import Execute from "@graphql-box/execute"
import RequestParser from "@graphql-box/request-parser"
import Server from "@graphql-box/server"
import { makeExecutableSchema } from "@graphql-tools/schema"
import { performance } from "perf_hooks"
import { schemaResolvers, schemaTypeDefs } from "./schema"
import logger from "./logger"
const schema = makeExecutableSchema({
typeDefs: schemaTypeDefs,
resolvers: schemaResolvers,
})
const server = new Server({
client: new Client({
cacheManager: new CacheManager({
cache: new Cachemap({
name: "server-cache",
reaper: reaper({ interval: 300000 }),
store: redis(/* configure */),
}),
cascadeCacheControl: true,
typeCacheDirectives: {
// Add any type specific cache control directives in the format:
// TypeName: "public, max-age=3",
},
}),
debugManager: new DebugManager({
environment: "server",
log: (...args) => {
logger.log(...args)
},
name: "SERVER",
performance,
}),
requestManager: new Execute({ schema }),
requestParser: new RequestParser({ schema }),
}),
})
// Meanwhile... somewhere else in your code
app.use("api/graphql", graphqlServer.request())README
To run a GraphQL.js hello world script from the command line:
npm install graphqlThen run node hello.js with this code in hello.js:
var { graphql, buildSchema } = require("graphql")
var schema = buildSchema(`
type Query {
hello: String
}
`)
var rootValue = { hello: () => "Hello world!" }
var source = "{ hello }"
graphql({ schema, source, rootValue }).then(response => {
console.log(response)
})README
- Built around the Fetch API
Request&Responseobjects - GraphQL over HTTP compliant
- Extensible GraphQL Engine powered by Envelop
- GraphQL Subscriptions over HTTP
- Handle file uploads with GraphQL
- Integrates with AWS Lambda, Cloudflare Workers, Deno, Express, Next.js, SvelteKit, and more.
To run a hello world server with graphql-yoga:
npm install graphql-yoga graphqlThen create a server using the createServer import:
import { createServer } from "http"
import { createSchema, createYoga } from "graphql-yoga"
createServer(
createYoga({
schema: createSchema({
typeDefs: /* GraphQL */ `
type Query {
hello: String
}
`,
resolvers: {
Query: {
hello: () => "Hello Hello Hello",
},
},
}),
}),
).listen(4000, () => {
console.info("GraphQL Yoga is listening on http://localhost:4000/graphql")
})Depending on your deployment target, you may need to use an additional library. See the documentation for further details.
README
To run an hello world script with mercurius:
npm install fastify mercuriusThen run node app.js with this code in app.js:
const Fastify = require("fastify")
const mercurius = require("mercurius")
const schema = `
type Query {
hello(name: String): String!
}
`
const resolvers = {
Query: {
hello: async (_, { name }) => `hello ${name || "world"}`,
},
}
const app = Fastify()
app.register(mercurius, {
schema,
resolvers,
})
app.listen(3000)
// Call IT!
// curl 'http://localhost:3000/graphql' \
// -H 'content-type: application/json' \
// --data-raw '{"query":"{ hello(name:\"Marcurius\") }" }'npm create pylon@latest to get started.README
- Create
npm create pylon@latest- Develop
Example service:
import { app } from "@getcronit/pylon"
class User {
name: string
email: string
constructor(name: string, email: string) {
this.name = name
this.email = email
}
}
const users = [
new User("Alice", "alice@example.com"),
new User("Bob", "bob@example.com"),
new User("Charlie", "charlie@example.com"),
]
export const graphql = {
Query: {
users,
user: (name: string) => {
return users.find(user => user.name === name)
},
},
Mutation: {
addUser: (name: string, email: string) => {
const user = new User(name, email)
users.push(user)
return user
},
},
}
export default app- Query
query User {
user(name: "Alice") {
name
email
}
}
query Users {
users {
name
email
}
}
mutation AddUser {
addUser(name: "Corina", email: "corina@example.com") {
name
email
}
}README
Brangr - Browse Any Graph
-
Brangr is a simple, unique tool that any web server can host to provide a user-friendly browser/viewer for any GraphQL service (or many).
-
Brangr formats GraphQL results attractively, via a selection of user-configurable layouts. It lets users extract the generated HTML, and its source JSON. It provides a clever schema browser. It has built-in docs.
-
Brangr enables sites hosting it to present users with a collection of pre-fab GraphQL requests, which they can edit if desired, and let them create their own requests. And it allows sites to define custom CSS styling for all aspects of the formatted results.
-
Try it at the public Brangr site.
Example
query {
heroes(_layout: { type: table }) { # _layout arg not sent to service
first
last
}
}Brangr renders the above query as follows (though not in a quote block):
heroes...
First Last Arthur Dent Ford Prefect Zaphod Beeblebrox
README
GiraphQL makes writing type-safe schemas simple, and works without a code generator, build process, or extensive manual type definitions.
import { ApolloServer } from "apollo-server"
import SchemaBuilder from "@giraphql/core"
const builder = new SchemaBuilder({})
builder.queryType({
fields: t => ({
hello: t.string({
args: {
name: t.arg.string({}),
},
resolve: (parent, { name }) => `hello, ${name || "World"}`,
}),
}),
})
new ApolloServer({
schema: builder.toSchema({}),
}).listen(3000)README
GraphQL Middleware is a schema wrapper which allows you to manage additional functionality across multiple resolvers efficiently.
Features💡 Easy to use: An intuitive, yet familiar API that you will pick up in a second. 💪 Powerful: Allows complete control over your resolvers (Before, After). 🌈 Compatible: Works with any GraphQL Schema.
Exampleconst { ApolloServer } = require("apollo-server")
const { makeExecutableSchema } = require("@graphql-tools/schema")
const typeDefs = `
type Query {
hello(name: String): String
bye(name: String): String
}
`
const resolvers = {
Query: {
hello: (root, args, context, info) => {
console.log(`3. resolver: hello`)
return `Hello ${args.name ? args.name : "world"}!`
},
bye: (root, args, context, info) => {
console.log(`3. resolver: bye`)
return `Bye ${args.name ? args.name : "world"}!`
},
},
}
const logInput = async (resolve, root, args, context, info) => {
console.log(`1. logInput: ${JSON.stringify(args)}`)
const result = await resolve(root, args, context, info)
console.log(`5. logInput`)
return result
}
const logResult = async (resolve, root, args, context, info) => {
console.log(`2. logResult`)
const result = await resolve(root, args, context, info)
console.log(`4. logResult: ${JSON.stringify(result)}`)
return result
}
const schema = makeExecutableSchema({ typeDefs, resolvers })
const schemaWithMiddleware = applyMiddleware(schema, logInput, logResult)
const server = new ApolloServer({
schema: schemaWithMiddleware,
})
await server.listen({ port: 8008 })README
GraphQL Shield helps you create a permission layer for your application. Using an intuitive rule-API, you’ll gain the power of the shield engine on every request and reduce the load time of every request with smart caching. This way you can make sure your application will remain quick, and no internal data will be exposed.
import { rule, shield, and, or, not } from "graphql-shield"
// Rules
const isAuthenticated = rule({ cache: "contextual" })(async (
parent,
args,
ctx,
info,
) => {
return ctx.user !== null
})
const isAdmin = rule({ cache: "contextual" })(async (
parent,
args,
ctx,
info,
) => {
return ctx.user.role === "admin"
})
const isEditor = rule({ cache: "contextual" })(async (
parent,
args,
ctx,
info,
) => {
return ctx.user.role === "editor"
})
// Permissions
const permissions = shield({
Query: {
frontPage: not(isAuthenticated),
fruits: and(isAuthenticated, or(isAdmin, isEditor)),
customers: and(isAuthenticated, isAdmin),
},
Mutation: {
addFruitToBasket: isAuthenticated,
},
Fruit: isAuthenticated,
Customer: isAdmin,
})
// Server
const server = new GraphQLServer({
typeDefs,
resolvers,
middlewares: [permissions],
context: req => ({
...req,
user: getUser(req),
}),
})README
Microfiber is a JavaScript library that allows:
- Digging through your Introspection Query Results for a specific Query, Mutation, Type, Field, Argument or Subscription.
- Removing a specific Query, Mutation, Type, Field/InputField, Argument or Subscription from your Introspection Query Results.
- Removing Queries, Mutations, Fields/InputFields or Arguments that refer to Type that does not exist in - or has been removed from - your Introspection Query Results.
npm install microfiber
# OR
yarn add microfiberThen in JS:
import { Microfiber } from "microfiber"
const introspectionQueryResults = {
// ...
}
const microfiber = new Microfiber(introspectionQueryResults)
// ...do some things to your schema with `microfiber`
const cleanedIntrospectonQueryResults = microfiber.getResponse()README
SpectaQL is a Node.js library that generates static documentation for a GraphQL schema using a variety of options:
- From a live endpoint using the introspection query.
- From a file containing an introspection query result.
- From a file, files or glob leading to the schema definitions in SDL.
Out of the box, SpectaQL generates a single 3-column HTML page and lets you choose between a couple built-in themes. A main goal of the project is to be easily and extremely customizable—it is themeable and just about everything can be overridden or customized.
npm install --dev spectaql
# OR
yarn add -D spectaql
# Then generate your docs
npm run spectaql my-config.yml
# OR
yarn spectaql my-config.ymlREADME
-
-
Mojolicious-Plugin-GraphQL - connect your GraphQL service to a Mojolicious app
-
GraphQL-Plugin-Convert-DBIC - automatically connect your DBIx::Class schema to GraphQL
-
GraphQL-Plugin-Convert-OpenAPI - automatically connect any OpenAPI service (either local Mojolicious one, or remote) to GraphQL
-
README
- GraphQL Java client: it generates the Java classes that call the GraphQL endpoint, and the POJO that will contain the data returned by the server. The GraphQL endpoint can then be queried by using a simple call to a Java method (see sample below)
- GraphQL Java server: it is based on graphql-java (listed here above). It generates all the boilerplate code. You’ll only have to implement what’s specific to your server, which are the joins between the GraphQL types. GraphQL Java Generator is available as a Maven Plugin. A Gradle plugin is coming soon. Please note that GraphQL Java Generator is an accelerator: the generated code doesn’t depend on any library specific to GraphQL Java Generator. So, it helps you to start building application based on graphql-java. Once the code is generated, you can decide to manually edit it as any standard java application, and get rid of GraphQL Java Generator. Of course you can, and should, according to us :), continue using GraphQL Java Generator when your project evolves.
README
The following class is enough to create both a Relay-compatible GraphQL server and a hypermedia API supporting modern REST formats (JSON-LD, JSONAPI…):
<?php
namespace AppEntity;
use ApiPlatformCoreAnnotationApiResource;
use DoctrineORMMapping as ORM;
/**
* Greet someone!
*
* @ApiResource
* @ORMEntity
*/
class Greeting
{
/**
* @ORMId
* @ORMColumn(type="guid")
*/
public $id;
/**
* @var string Your nice message
*
* @ORMColumn
*/
public $hello;
}Other API Platform features include data validation, authentication, authorization, deprecations, cache and GraphiQL integration.
README
GraPHPinator is feature complete PHP implementation of GraphQL server. Its job is transformation of query string into resolved Json result for a given Schema.
- Aims to be compliant with the latest draft of GraphQL specification.
- Fully typesafe, and therefore minimum required PHP version is 8.0. Sacrafices a tiny bit of convenience for huge amount of clarity and safety - no random configuration
arrays, no mixed types, no variable function arguments - this library doesnt try to save you from verbosity, but makes sure you always know what you’ve got. - Code first.
- Flexible. Easy to extend with extra functionality using Modules or middleware Directives.
- Includes some opt-in extensions which are out of scope of official specs:
- Printer - Schema printing for GraPHPinator typesystem.
- Extra types - Some useful and commonly used types, both scalar or composite.
- Constraint directives - Typesystem directives to declare additional validation on top of GraphQL typesystem.
- Where directives - Executable directives to filter values in lists.
- File upload using multipart-formdata specs (currently bundled).
- Query cost limit module - Modules to limit query cost by restricting maximum depth or number of nodes.
- Project is composed from multiple smaller packages, which may be used standalone:
README
Easily build your GraphQL schema for webonyx/graphql-php using PHP attributes instead of large configuration arrays.
A simple example:
use Jerowork\GraphqlAttributeSchema\Attribute\Enum;
use Jerowork\GraphqlAttributeSchema\Attribute\Field;
use Jerowork\GraphqlAttributeSchema\Attribute\InputType;
use Jerowork\GraphqlAttributeSchema\Attribute\Mutation;
use Jerowork\GraphqlAttributeSchema\Attribute\Query;
use Jerowork\GraphqlAttributeSchema\Attribute\Type;
final readonly class CreateUserMutation
{
#[Mutation]
public function createUser(CreateUserInputType $input): User
{
// Business logic to create a user
}
}
final readonly class UserQuery
{
#[Query(description: 'Get a user')]
public function user(int $userid): User
{
// Fetch and return user data
}
}
#[InputType]
final readonly class CreateUserInputType
{
public function __construct(
#[Field]
public int $userId,
#[Field]
public string $name,
#[Field(name: 'phoneNumber')]
public ?string $phone,
) {}
}
#[Type]
final readonly class User
{
// Define fields as class properties
public function __construct(
#[Field]
public int $userId,
#[Field]
public string $name,
public ?string $phone,
#[Field(description: 'The status of the user')]
public UserStatusType $status,
) {}
// Define fields with methods for additional logic
#[Field]
public function getPhoneNumber(): string
{
return sprintf('+31%s', $this->phone);
}
}
#[Enum(description: 'The status of the user')]
enum UserStatusType: string
{
case Created = 'CREATED';
case Removed = 'REMOVED';
}This will result in the following GraphQL schema:
type Mutation {
createUser(input: CreateUserInput!): User!
}
type Query {
user(userId: Int!): User!
}
input CreateUserInput {
userId: Int!
name: String!
phoneNumber: String
}
type User {
userId: Int!
name: String!
status: UserStatus!
phoneNumber: String
}
enum UserStatus {
CREATED
REMOVED
}Available attributes: Mutation, Query, Type, InterfaceType, InputType, Enum, EnumValue, Field, Arg, Autowire, Scalar, Cursor
README
It is framework agnostic with bindings available for Symfony and Laravel. This code declares a “product” query and a “Product” Type:
class ProductController
{
/**
* @Query()
*/
public function product(string $id): Product
{
// Some code that looks for a product and returns it.
}
}
/**
* @Type()
*/
class Product
{
/**
* @Field()
*/
public function getName(): string
{
return $this->name;
}
// ...
}Other GraphQLite features include validation, security, error handling, loading via data-loader pattern…
README
To run a Siler hello world script:
type Query {
hello: String
}<?php
declare(strict_types=1);
require_once '/path/to/vendor/autoload.php';
use SilerDiactoros;
use SilerGraphql;
use SilerHttp;
$typeDefs = file_get_contents(__DIR__.'/schema.graphql');
$resolvers = [
'Query' => [
'hello' => 'world',
],
];
$schema = Graphqlschema($typeDefs, $resolvers);
echo "Server running at http://127.0.0.1:8080";
Httpserver(Graphqlpsr7($schema), function (Throwable $err) {
var_dump($err);
return Diactorosjson([
'error' => true,
'message' => $err->getMessage(),
]);
})()->run();It also provides functionality for the construction of a WebSocket Subscriptions Server based on how Apollo works.
README
Install Ariadne Codegen:
$ pip install ariadne-codegen
Create queries.graphql file:
mutation CreateToken($username: String!, $password: String!) {
createToken(username: $username, password: $password) {
token
errors {
field
message
}
}
}Add [ariadne-codegen] section to your pyproject.toml:
[ariadne-codegen]
queries_path = "queries.graphql"
remote_schema_url = "http://example.com/graphql/"
Generate client:
$ ariadne-codegen
And use it in your Python projects:
from graphql_client import Client
with Client("http://example.com/graphql/") as client:
result = client.create_token(username="Admin", password="Example123)
if result.errors:
error = result.errors[0]
raise ValidationError({error.field: error.message})
auth_token = result.tokenREADME
graphql_query is complete GraphQL query string builder for python. With graphql_query you can The documentation for graphql_query can be found at https://denisart.github.io/graphql-query.
$ pip install graphql_queryCode for the simple query
{
hero {
name
}
}it is
from graphql_query import Operation, Query
hero = Query(name="hero", fields=["name"])
operation = Operation(type="query", queries=[hero])
print(operation.render())
"""
query {
hero {
name
}
}
"""For generation of the following query
query Hero($episode: Episode, $withFriends: Boolean!) {
hero(episode: $episode) {
name
friends @include(if: $withFriends) {
name
}
}
}we have
from graphql_query import Argument, Directive, Field, Operation, Query, Variable
episode = Variable(name="episode", type="Episode")
withFriends = Variable(name="withFriends", type="Boolean!")
arg_episode = Argument(name="episode", value=episode)
arg_if = Argument(name="if", value=withFriends)
hero = Query(
name="hero",
arguments=[arg_episode],
fields=[
"name",
Field(
name="friends",
fields=["name"],
directives=[Directive(name="include", arguments=[arg_if])]
)
]
)
operation = Operation(
type="query",
name="Hero",
variables=[episode, withFriends],
queries=[hero]
)
print(operation.render())
"""
query Hero(
$episode: Episode
$withFriends: Boolean!
) {
hero(
episode: $episode
) {
name
friends @include(
if: $withFriends
) {
name
}
}
}
"""README
GraphQL client library, wrapped around pydantic classes for type validation, provides a safe and simple way to query data from a GraphQL API.
Features:
- python objects to valid GraphQL string
- scalar query responses
- type-safety
pip3 install pydantic-graphqlREADME
Here’s an example of a qlient hello world.
first install the library:
pip install qlientCreate a swapi_client_example.py file with this content:
from qlient.http import HTTPClient, GraphQLResponse
client = HTTPClient("https://swapi-graphql.netlify.app/.netlify/functions/index")
res: GraphQLResponse = client.query.film(
# swapi graphql input fields
id="ZmlsbXM6MQ==",
# qlient specific
_fields=["id", "title", "episodeID"]
)
print(res.request.query) # query film($id: ID) { film(id: $id) { id title episodeID } }
print(res.request.variables) # {'id': 'ZmlsbXM6MQ=='}
print(res.data) # {'film': {'id': 'ZmlsbXM6MQ==', 'title': 'A New Hope', 'episodeID': 4}}Close the file and run it using python:
python swapi_client_example.pyREADME
Ariadne can be installed with pip:
$ pip install ariadneMinimal “Hello world” server example:
from ariadne import ObjectType, gql, make_executable_schema
from ariadne.asgi import GraphQL
type_defs = gql(
"""
type Query {
hello: String!
}
"""
)
query_type = ObjectType("Query")
@query_type.field("hello")
def resolve_hello(*_):
return "Hello world!"
schema = make_executable_schema(type_defs, query_type)
app = GraphQL(schema, debug=True)Run the server with uvicorn:
$ pip install uvicorn
$ uvicorn example:app
README
A Quickstart for Django Graphbox:
- Install the package:
pip install django-graphbox- Create a new Django project:
django-admin startproject myproject- Create a new Django app:
cd myproject
python manage.py startapp myapp- Define your Django models in
myapp/models.py:
from django.db import models
class MyModel(models.Model):
name = models.CharField(max_length=100)- Create and run migrations:
python manage.py makemigrations
python manage.py migrate- Configure and Build your GraphQL Schema in
myapp/schema.py:
from django_graphbox.builder import SchemaBuilder
from myapp.models import MyModel
builder = SchemaBuilder()
builder.add_model(MyModel)
query_class = builder.build_schema_query()
mutation_class = builder.build_schema_mutation()- Create a main Schema in
myproject/schema.py(In this main schema you can add your own queries and mutations):
import graphene
from myapp.schema import query_class, mutation_class
class Query(query_class, graphene.ObjectType):
pass
class Mutation(mutation_class, graphene.ObjectType):
pass
schema = graphene.Schema(query=Query, mutation=Mutation)- Add the GraphQL view to your
myproject/urls.py:
from django.urls import path
from graphene_file_upload.django import FileUploadGraphQLView
from django.views.decorators.csrf import csrf_exempt
from myproject.schema import schema
urlpatterns = [
path('graphql/', csrf_exempt(FileUploadGraphQLView.as_view(graphiql=True, schema=schema))),
]- Run the server:
python manage.py runserver- Open the GraphiQL interface at
http://localhost:8000/graphqland start querying your API!
You can find advanced examples with authentication, filters, validations and more on GitHub or pypi.
README
You can install the package with pip
pip install graphene-django-cruddalsTo use it, simply create a new class that inherits “DjangoModelCruddals”
Suppose we have the following models.
from django.db import models
class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')
is_active = models.BooleanField(default=True)Then we can create a complete CRUD+DALS for the models Question with the following code
from graphene_django_cruddals import DjangoModelCruddals
class CruddalsQuestion(DjangoModelCruddals):
class Meta:
model = QuestionNow you can use the schema that was generated for you,
schema = CruddalsQuestion.Schemaor use in your existing schema root Query and Mutation
class Query(
# ... your others queries
CruddalsQuestion.Query,
graphene.ObjectType,
):
pass
class Mutation(
# ... your others mutations
CruddalsQuestion.Mutation,
graphene.ObjectType,
):
pass
schema = graphene.Schema( query=Query, mutation=Mutation, )That’s it! You can test in graphiql or any other client that you use to test your GraphQL APIs..
Find more information in the official documentation.
README
To run a Graphene hello world script:
pip install grapheneThen run python hello.py with this code in hello.py:
import graphene
class Query(graphene.ObjectType):
hello = graphene.String(name=graphene.String(default_value="World"))
def resolve_hello(self, info, name):
return 'Hello ' + name
schema = graphene.Schema(query=Query)
result = schema.execute('{ hello }')
print(result.data['hello']) # "Hello World"There are also nice bindings for Relay, Django, SQLAlchemy, and Google App Engine.
README
Here’s an example of a Strawberry hello world, first install the library:
pip install strawberry-graphqlCreate an app.py file with this content:
import strawberry
@strawberry.type
class Query:
@strawberry.field
def hello(self, name: str = "World") -> str:
return f"Hello {name}"
schema = strawberry.Schema(query=Query)Then run strawberry server app and you will have a basic schema server
running on http://localhost:8000.
Strawberry also has views for ASGI, Flask and Django and provides utilities like dataloaders and tracing.
README
To run a tartiflette hello world script:
pip install tartifletteThen run python hello.py with this code in hello.py:
import asyncio
from tartiflette import Engine, Resolver
@Resolver("Query.hello")
async def resolver_hello(parent, args, ctx, info):
return "hello " + args["name"]
async def run():
tftt_engine = Engine("""
type Query {
hello(name: String): String
}
""")
result = await tftt_engine.execute(
query='query { hello(name: "Chuck") }'
)
print(result)
# {'data': {'hello': 'hello Chuck'}}
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(run())There is also a nice HTTP wrapper.
README
require 'agoo'
class Query
def hello
'hello'
end
end
class Schema
attr_reader :query
def initialize
@query = Query.new()
end
end
Agoo::Server.init(6464, 'root', thread_count: 1, graphql: '/graphql')
Agoo::Server.start()
Agoo::GraphQL.schema(Schema.new) {
Agoo::GraphQL.load(%^type Query { hello: String }^)
}
sleep
# To run this GraphQL example type the following then go to a browser and enter
# a URL of localhost:6464/graphql?query={hello}
#
# ruby hello.rbREADME
To run a hello world script with graphql-ruby:
gem install graphqlThen run ruby hello.rb with this code in hello.rb:
require 'graphql'
class QueryType < GraphQL::Schema::Object
field :hello, String
def hello
"Hello world!"
end
end
class Schema < GraphQL::Schema
query QueryType
end
puts Schema.execute('{ hello }').to_jsonThere are also nice bindings for Relay and Rails.
README
require 'rails-graphql'
class GraphQL::AppSchema < GraphQL::Schema
query_fields do
field(:hello).resolve { 'Hello World!' }
end
end
puts GraphQL::AppSchema.execute('{ hello }')Less is more! Please check it out the docs.
README
A client library for rust that generates queries from types you provide, verifying that the types match the shape of your schema.
It provides a generator to bootstrap types from existing GraphQL queries.
Usage example:
#[derive(cynic::QueryFragment, Debug)]
#[cynic(
schema_path = "../schemas/starwars.schema.graphql",
query_module = "query_dsl",
graphql_type = "Root",
argument_struct = "FilmArguments"
)]
struct FilmDirectorQuery {
#[arguments(id = &args.id)]
film: Option<Film>,
}
#[derive(cynic::QueryFragment, Debug)]
#[cynic(
schema_path = "../schemas/starwars.schema.graphql",
query_module = "query_dsl",
graphql_type = "Film"
)]
struct Film {
title: Option<String>,
director: Option<String>,
}
#[derive(cynic::FragmentArguments)]
struct FilmArguments {
id: Option<cynic::Id>,
}
fn main() {
use cynic::{QueryBuilder, http::ReqwestBlockingExt};
let query = FilmDirectorQuery::build(&FilmArguments {
id: Some("ZmlsbXM6MQ==".into()),
})
reqwest::blocking::Client::new()
.post("https://swapi-graphql.netlify.com/.netlify/functions/index")
.run_graphql(query)
.unwrap()
}
mod query_dsl {
cynic::query_dsl!("../schemas/starwars.schema.graphql");
}README
Usage example
use gql_client::Client;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let endpoint = "https://graphqlzero.almansi.me/api";
let query = r#"
query AllPostsQuery {
posts {
data {
id
}
}
}
"#;
let client = Client::new(endpoint);
let data: AllPosts = client.query::<AllPosts>(query).await.unwrap();
println!("{:?}" data);
Ok(())
}README
use async_graphql::*;
struct Query;
#[Object]
impl Query {
/// Returns the sum of a and b
async fn add(&self, a: i32, b: i32) -> i32 {
a + b
}
}README
An example of defining a GraphQL query and running it with caliban:
// define your query using Scala
val query: SelectionBuilder[RootQuery, List[CharacterView]] =
Query.characters {
(Character.name ~ Character.nicknames ~ Character.origin)
.mapN(CharacterView)
}
import sttp.client3._
// run the query and get the result already parsed into a case class
val result = query.toRequest(uri"http://someUrl").send(HttpClientSyncBackend()).bodyREADME
An example of a simple GraphQL schema and query with caliban:
import caliban._
import caliban.schema.Schema.auto._
// schema
case class Query(hello: String)
// resolver
val resolver = RootResolver(Query("Hello world!"))
val api = graphQL(resolver)
for {
interpreter <- api.interpreter
result <- interpreter.execute("{ hello }")
} yield resultREADME
An example of a hello world GraphQL schema and query with sangria:
import sangria.schema._
import sangria.execution._
import sangria.macros._
val QueryType = ObjectType("Query", fields[Unit, Unit](
Field("hello", StringType, resolve = _ ⇒ "Hello world!")
))
val schema = Schema(QueryType)
val query = graphql"{ hello }"
Executor.execute(schema, query) map printlnREADME
SwiftGraphQL is a Swift code generator and a lightweight GraphQL client. It lets you create queries using Swift, and guarantees that every query you create is valid.
The library is centered around three core principles:
🚀 If your project compiles, your queries work. 🦉 Use Swift in favour of GraphQL wherever possible. 🌳 Your application model should be independent of your schema.
Here’s a short preview of the SwiftGraphQL code
import SwiftGraphQL
// Define a Swift model.
struct Human: Identifiable {
let id: String
let name: String
let homePlanet: String?
}
// Create a selection.
let human = Selection.Human {
Human(
id: try $0.id(),
name: try $0.name(),
homePlanet: try $0.homePlanet()
)
}
// Construct a query.
let query = Selection.Query {
try $0.humans(human.list)
}
// Perform the query.
send(query, to: "http://swift-graphql.heroku.com") { result in
if let data = try? result.get() {
print(data) // [Human]
}
}README
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2.
Apollo Router Core is free, source-available, well-tested, regularly benchmarked, includes most major features of Apollo Gateway and is able to serve production-scale workloads.
GraphOS RouterIn conjunction with the Apollo GraphOS platform, GraphOS Router is the enterprise-grade runtime plane and a client’s entry point to your federated supergraph. Configure it to secure your supergraph, monitor and optimize performance, extend functionality, and more.
README
Run gqt against your GraphQL endpoint. Build your query in an
intuitive TUI and execute it. The response from the server is written
to standard output.
gqt -e https://your.app.com/graphqlREADME
GraphQL Protect helps you protect your GraphQL API against abuse by providing a large number of plug-and-play protection mechanism with sane defaults, while still allowing you complete customizability.
Getting started with GraphQL Protect is as simple as pulling the provided container, or running the binary directly, and supplying it with your configuration.
GraphQL Protect offers the following protection mechanism, and more:
- Trusted Documents (Persisted Operations)
- Max Aliases
- Max Tokens
- Max Depth
- Max Batch
- Block Field Suggestions
- Obfuscate upstream errors
- Enforce POST
- Access Logging
- … and more!
Protecting your GraphQL API against abuse has never been easier, start protecting your API today.
The full example can be found on GitHub.
README
Hive Gateway is a fully open-source, MIT-licensed GraphQL router that can act as a GraphQL Federation gateway, a subgraph or a proxy gateway for any GraphQL API service.
Hive Gateway provides a flexible, open-source solution tailored to meet the needs of modern GraphQL architectures.
It supports deployment as a standalone binary, a Docker image, or a JavaScript package, making it compatible with environments such as Node.js, Bun, Deno, Google Cloud Functions, Azure Functions, AWS Lambda, or Cloudflare Workers.
README
Microcks is a platform for turning your API and microservices assets - GraphQL schemas, OpenAPI specs, AsyncAPI specs, gRPC protobuf, Postman collections, SoapUI projects_ - into live simulations in seconds.
It also reuses these assets for running compliance and non-regression tests against your API implementation. We provide integrations with Jenkins, GitHub Actions, Tekton and many others through a simple CLI.
README
Run Schemathesis via Docker against your GraphQL endpoint:
docker run schemathesis/schemathesis \
run https://your.app.com/graphqlSchemathesis will generate queries matching your GraphQL schema and catch server crashes automatically. Generated queries have arbitrary depth and may contain any subset of GraphQL types defined in the input schema. They expose edge cases in your code that are unlikely to be found otherwise.
Note that you can write your app in any programming language; the tool will communicate with it over HTTP.
For example, running the command above against https://bahnql.herokuapp.com/graphql uncovers that running the { search(searchTerm: "") { stations { name } } } query leads to a server error:
{
"errors": [
{
"message": "Cannot read property 'city' of undefined",
"locations": [
{
"line": 1,
"column": 28
}
],
"path": ["search", "stations"]
}
],
"data": null
}README
WunderGraph composes all your APIs into a single unified GraphQL API and allows you to expose your Graph as a secure and type-safe JSON-RPC API.
To get started with WunderGraph, you can use create-wundergraph-app to bootstrap a new project:
npx create-wundergraph-app my-project -E nextjs-swrOn the client side, WunderGraph’s JSON-RPC API integrates very well with frameworks like Next.js, SWR and React Query, while one the backend, we’re able to leverage the power of “Server-Side-Only GraphQL”. Handle authentication, authorization, validation, joins and more right in the Query Layer.
mutation (
$name: String! @fromClaim(name: NAME)
$email: String! @fromClaim(name: EMAIL)
$message: String! @jsonSchema(pattern: "^[a-zA-Z 0-9]+$")
) {
createOnepost(
data: {
message: $message
user: {
connectOrCreate: {
where: { email: $email }
create: { email: $email, name: $name }
}
}
}
) {
id
message
user {
id
name
}
}
}The Query above requires the user to be authenticated, injects the user’s name and email from the JWT token and validates the message against a JSON Schema.
Here’s another example showcasing how we can use Server-Side GraphQL with WunderGraph’s unique join capabilities, composing data from two different APIs into a single GraphQL response.
query (
$continent: String!
# the @internal directive removes the $capital variable from the public API
# this means, the user can't set it manually
# this variable is our JOIN key
$capital: String! @internal
) {
countries_countries(filter: { continent: { eq: $continent } }) {
code
name
# using the @export directive, we can export the value of the field `capital` into the JOIN key ($capital)
capital @export(as: "capital")
# the _join field returns the type Query!
# it exists on every object type so you can everywhere in your Query documents
_join {
# once we're inside the _join field, we can use the $capital variable to join the weather API
weather_getCityByName(name: $capital) {
weather {
temperature {
max
}
summary {
title
description
}
}
}
}
}
}The full example can be found on GitHub.